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Objective Results Observations

To evaluate whether descriptive data derived from Table 1. Demographics, conventional vital signs and injury scores. Table 3. Heart-rate complexity variables associated with the need Data from 192 prehospital trauma patients and 70

EKG analysis and submitted to off-the-shelf ANN

to perform life-saving interventions by ANN.

emergency room patients (n=262) patients were

software could be used for identification of Variable Non LSI LSI o value . N S mclgded in th(=T study. 6_5 patients received a total of
a mixed cohort of prehospital and emergency trauma Age, yr 35.30+£0.99 | 33.50+1.80 0.271
patients. Sex (male) 75 10% 82 50% 0.224 ApEN 110002 0-930.04 <0001 LSls included: intubation (n=61), cardiopulmonary
7 7 : FDDA 1.13+0.01 1.07+0.01 <.0001 resuscitation (n=5), cricothyroidotomy (n=2),
MOl ; _
rati 28.42% 26.56% 0.775 DFA 1.35 + 0.03 1.07 + 0.05 <0001 emergency k_)lood transfusions (n=4), and
H thesi (penetrating) decompression of pneumothorax (n=16).
ypo €sIs HR 97 +1.60 109 + 4.30 0.004 SOD 0.15+0.00 0.20+0.01 <.0001
. . - . : StatAV 0.82+0.01 0.95 + 0.01 <.0001 From a clinical standpoint LS| and non-LSI patients
ANN reliably identifies patients who received an LS| SAP 129+ 1.70 120 £3.60 0.03 were indistin uishabIF()a With Tesoect o AGe Eex
based on EKG-derived new vital signs. GCSroma 1420+0.16 | 8.94%0.70 <.0001 Fw 52.59+0.93  60.84+1.17 <.0001 IStinguis p ge, Sex,
_ mechanism of injury, heart rate, or blood pressure
GCSyoror 5.80  0.06 3.70+0.32 <.0001 DisnEn 064+001 055+001 <.0001 (Table 1). However HR and SAP were statistically
Mortality 1.52% 13.90% 0.0004 different among the groups.
M et h O d S ApEn, approximate entropy; FDDA, fractal dimension by dispersion analysis; DFA, short-
term correlations within the RRI by Detrended Fluctuations Analysis; SOD, similarity of . . . . . .
d fied f h d h LSI, patients that received lifesaving interventions; Non LSI, patients that did not distributions; StatAV, signal Stationarity; FW (%), forbidden words; DisnEn, normalized Sixteen of the EKG-derived vital signs listed in
. Patients were identified for this study using the receive LSIs; MOI, mechanism of injury (percentage of penetrating injuries); HR, signal distribution entropy. All variables are unitless. Data are means + SEM.
itals d b d | d by h g S heart rate, beats per minute; SAP, systolic arterial pressure, mm HG; GCSqrp field (Ta_bles 2 and 3) Separated the LS| and .NOI']L.S|
Trauma Vitals database developed by the U.S. Army Glasgow Coma Score total; GCSyoror field Glasgow Coma Score motor. Data are patients. Note, for the Frequency-domain variables
Institute of Surgical Research (Fort Sam Houston, means + SEM. TP, HF, LF/HF, HFnu listed in Table 2, 200-beat

TX).

» Commercial monitors used for EKG and vital sign
data collection (Pic 50™ vital sign monitor, Welch
Allyn, Inc., Skaneateles Falls, NY and ProPaq

Table 2. Linear time- and frequency-domain analysis variables
associated with the need to perform life-saving interventions by

datasets maybe too short for methodological validity.

ANN identified patients who received an LSI based
on EKG-derived data alone with a significant and

monitor (Welch Allyn,_ Inc., Skanea’_[eles F_al!s, NY). ANN. ROC Curve clinically relevant degree of accuracy (Fig. 1).

» Conventional vital signs, mechanism of injury (MOlI, e - _

blunt or penetrating), field Glasgow Coma Scale Reflects " ; w Conclusions

score (GCS), age, sex, and in-hospital mortality Non LS| s parasympat Sﬁﬁp:ﬁz“ i — ) e " ’

were recorded. Blood pressures were measured Variable _147) (n=65) p value hetic C Nervous l B IS retrospective analysis suggests that the need to

automatically by cuff using the vital signs monitor. nervous system ! perfqrm LSls F:ould be pr'edlcted in entlr_ely automatic

* Retrospective review of 10-30 minute-long EKG SySiem 205 { fashion, pendlng further Improvements in .

sections and clinical data from 464 patients. RRI 658'?8 * 5?%‘?? <.0001 yes yes % ( computerlzgd yvaveform analysis, signal processing,

* Patients were included into the study if: 1) their ' ' 504- | and transmission.

EKG was present and without electromechanical RMSSD 1389088 6.17x0.77 <0001 yes . o .

noise; 2) 800 R-to-R intervals (RRIs) were available TP 1107.75+ 30598+ <.0001 yes yes ! Potential applications of our approach include

for analysis; 3) no ectopic beats were found within 131.81 58.73 L development of personal diagnostic and monitoring

the analyzed data segments. HE 9%577; 2149+703 <0001 yes systems to be used for r_emo_te assessment aqd

EKGs were analyzed off-line using the WinCPRs - -04 . . ool - v v + ‘ tr||age of combat(;:asualtl_es, |n'automob|Ie accident

software (Absolute Aliens Inc., Turku, Finland) as LF/HF oncs  acae <0001 yes yes 1- Specificity :nevritrzi‘zré er]\d cr)r?azztf;sf;rl]'[yatsjztteig;s

g(r)ec)\/;iusly described [Batchinsky et al., J Trauma HFnu 0.20+0.01 0.25%0.02 0.013 yes Fig. 1 RoC ICSULI;\;?nf;rE modelderved by AN for denifcation o ?ﬁﬂecr}ts— wo

“The ANN used was a commercially available feed- CDMLF 16.22+0.78 575+0.86  <.0001 yes yes ol cross valdation:stancard ror 0028 Asymptotc sigicance vas anglg;zind Our approach could also serve as an evidence-

forward back-propagation ANN (NeuralWare, CDMHF ~ 8.28+057 3.35x053 <0001 yes rospectvly. e NS HEE B REE based decision assistance tool helping medical
CDMLF/MHF 240+0.09 1.79+0.13  <.0001 yes yes providers distinguish patients in imminent danger of

Carnegie, PA). The software was used in its default
settings with training on 70% of the data and
analysis on 30%. A 10-fold cross-validation was
performed.

*SAS version 9.1 (SAS Institute, Cary, NC) was used
for statistical analysis.

RRI, mean R-to-R interval of the EKG, ms; RMSSD, the square root of the mean squared differences of

successive normal-to-normal (NN) RRIs; TP, total R-to-R interval spectral power (0.003-0.4 Hz, ms?)

s HF, RRI

spectral power at the high frequency (0.15-0.4, ms?); LF/HF, the ratio of LF (RRI spectral power at the low

frequency (0.04-0.15 Hz, ms?) to HF; HFnu, spectral power at the high frequency normalized to TP;
amplitude of the LF oscillations by complex demodulation; CDM HF, amplitude of the HF oscillations.
LF/HF, ratio of the CDM LF and CDM HF. Data are means + SEM.

CDM LF,
CDM

dying during times when changes in their traditional
vital signs are non-informative.
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