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Outline

Surgery and hemorrhage

— Patients are complex and dynamic

— Continuous instead of sporadic bedside care
Robotics

— Real-time image analysis; high speed data processing
Machine learning

— Advanced mathematical modeling; statistical relevance
Cardiovascular physiology

— Large amounts of complex, high-fidelity data

— Human LBNP model of acute blood loss

Discovered

— Several previously hidden hemodynamic relationships
— New method to analyze real-time physiological data



w0 N E

Hemorrhage

* Accounts for 40% of all trauma deaths?
— most frequent cause of preventable death after injury
e Tissue trauma causes hemorrhage, initiates
coagulation
* Shock (hypoperfusion)
— Primary driver of early, post-injury coagulopathy?

— Dose dependent correlation between severity of
tissue hypoperfusion and admission coagulopathy34

e Diagnosis and treatment
— ldentify bleeding early and prevent hypotension
— Correct coagulopathy and stop the bleeding
Sauaia A, Moore FA, Moore EE, et al. J Trauma. 1995;38:185
Hess J, Brohi K, Dutton R, et al. J Trauma. 2008;65:748

Brohi K, Cohen MJ, Ganter MT, et al. Ann Surg. 2007;245:812
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Humans Cannot Detect Early Signs Hemorrhage
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Robots and Machine Learning




Robots

 Autonomous robot navigation depends on
— ldentification of navigable terrain

— Stereo and color imaging reconstruction

* Provide info about ground plane features in the
near field

* Need far field planning ( > 50 meters)

» Greg Grudic and Jane Mulli

— University of Colorado

— Machine learning methods
* Near-to-far learning

* Near field terrain appearance and stereo readings
used to train models able to predict far field terrain



Machine Learning

« Subfield of artificial intelligence

— Design and development of algorithms and
techniques that allow computers to “learn”

— Extract information from massive data sets
using computational and statistical methods

o Extracts relevant sensor information predictive of a
condition

« Builds predictive models of the condition
 Determines the accuracy of the models
 No human intervention is needed!

— Exposes hidden relationships in the data,
faster and more accurately than any human




Robots

 LAGR (Learning applied to ground robots)
— DARPA program
— Image-based navigation system

— Each camera (640 x 480 pixels) = 307,200
pixels/image

— RGB (multiply x 3) = 921,600 pixels/image

— 30 frames/sec = 27,648,000 pixels/image-sec

— 4 cameras (multiply x 4) = 110,592,000
pixels/image-sec il

* Robot captures and processes
> 100M data points/second




Robots

 LAGR uses machine learning technigues

» Learns sets of fast, efficient density models in
real-time, in unknown, unstructured terrains

* Navigation system chooses whether to:
o Apply current models
» Discard inappropriate models
e Acquire new models...on its own
— Wlthout human Intervention




Could these same
methods be used to
learn and build sets of
models, able to

predict changes

IN human physiology In
real-time?
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Learning Regression Models

e Collect Training data, map into feature space

f(x)= Z,B,X,+,BO ( )_,31XX +182X12X3X56X106+

. Bund Model: y = Model (feature space)
 Make a prediction
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Model Development

e Used archived LBNP data from 28
experiments

— Built models using 27 subjects, tested on 28
— Repeated process 28 times

e First model:
— Used standard, non-invasive vital sign data
— Initial sample size = 64 beats
— New prediction made w/ each subsequent beat
— Compared Actual with Predicted LBNP
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Results

e First model accuracy estimates:
— Results are an average of the 28 experiments

— Correlation between Predicted and Actual
LBNP was 0.96

— Correlation between Predicted LBNP level at
which subjects decompensated versus Actual
level was 0.89



Real-time Testing




Real-time Testing

Prediction_GUl =
RAviEi ety L e
LBNP Level Prediction LBNP Drop to Decompensation Prediction
I I I I I Predicted LEMP : ! : ! ! ! Predicted
True LMPB = True
& a0 — 0%
80 -
0~ s
=3 B0 — e
i o
g g
— =)
o — o #r- a
= =
[} [d}
1 et
— el 18 -
15— ad
o0 - — o —_— 55
1 1 1 1 1 1 1 1 1 1 1
o 5 10 15 20 25 an 35 @0 o 10 15 20 25 30 ) 40
Time (Mins) Time (Mins)
LYL Models (Plat 1) G Collapse Models (Flot 2)
C:sers\greg'Documents'Pat_Mon\Development'Siohlon! C:Wsers\greg\Documents\Pat_Mon\Development'Biolon\GUI: Running
Stop!
Choose Model ] [ Choose Model
i S i = W = T i




SBP
mmmim DBP
mmmmm AP
SpO?2
ETCO2
RESP

e Actyal LBNP
""" ' Predicted LBNP



Next Steps

Baboon studies planned
— Validate and improve accuracy of the algorithm

Reduce latency

Shrink form factor
— Algorithm is lightweight, fast
— What is an optimal feature set? What platform?

M.L. Algorithms will:

— Automatically determine sensor types available

— Only make predictions when confident with data sensed
 Filter out noise; chose from signals available

Automatically determine optimal feature sets

— may be dependent on setting
« Battlefield vs. pre-hospital vs. In-hospital: ED, OR, ICU, ward



Next Steps

* Investigate other clinical scenarios
— Fluid resuscitation; end points of resuscitation
— TBIl: CBF, ICP and CPP relationships
— Optimal ventilator management
— Arrhythmia analysis
— Depth of anesthesia, etc.

e Collection and analysis of complex data
sets will enable us to uncover hidden
physiological relationships that are
predictive of a patient’s clinical course




Available

Feature Set

Machine learning techniques will
fundamentally change resuscitative
care from a process filled with
guesswork, to a predictive and
eventually an automated process

) Permissive Hypotension”

“Inadequate Perfusion”
“Shock State”




Summary

« Additive technologies leading to emergence of
artificial intelligence applications in medicine

— Smart systems that perceive their environment
(the patient) and take actions (autonomously),
based on maximal (predicted) chances for
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